Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35470228

RESUMO

Sensing the movement of fast objects within our visual environments is essential for controlling actions. It requires online estimation of motion direction and speed. We probed human speed representation using ocular tracking of stimuli of different statistics. First, we compared ocular responses to single drifting gratings (DGs) with a given set of spatiotemporal frequencies to broadband motion clouds (MCs) of matched mean frequencies. Motion energy distributions of gratings and clouds are point-like, and ellipses oriented along the constant speed axis, respectively. Sampling frequency space, MCs elicited stronger, less variable, and speed-tuned responses. DGs yielded weaker and more frequency-tuned responses. Second, we measured responses to patterns made of two or three components covering a range of orientations within Fourier space. Early tracking initiation of the patterns was best predicted by a linear combination of components before nonlinear interactions emerged to shape later dynamics. Inputs are supralinearly integrated along an iso-velocity line and sublinearly integrated away from it. A dynamical probabilistic model characterizes these interactions as an excitatory pooling along the iso-velocity line and inhibition along the orthogonal "scale" axis. Such crossed patterns of interaction would appropriately integrate or segment moving objects. This study supports the novel idea that speed estimation is better framed as a dynamic channel interaction organized along speed and scale axes.


Assuntos
Percepção de Movimento , Humanos , Movimento (Física) , Percepção de Movimento/fisiologia , Orientação , Estimulação Luminosa
2.
J Vis ; 21(5): 17, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34007990

RESUMO

Sensory adaptation is a useful tool to identify the links between perceptual effects and neural mechanisms. Even though motion adaptation is one of the earliest and most documented aftereffects, few studies have investigated the perception of direction and speed of the aftereffect at the same time, that is the perceived velocity. Using a novel experimental paradigm, we simultaneously recorded the perceived direction and speed of leftward or rightward moving random dots before and after adaptation. For the adapting stimulus, we chose a horizontally-oriented broadband grating moving upward behind a circular aperture. Because of the aperture problem, the interpretation of this stimulus is ambiguous, being consistent with multiple velocities, and yet it is systematically perceived as moving at a single direction and speed. Here we ask whether the visual system adapts to the multiple velocities of the adaptor or to just the single perceived velocity. Our results show a strong repulsion aftereffect, away from the adapting velocity (downward and slower), that increases gradually for faster test stimuli as long as these stimuli include some velocities that match some of the ambiguous ones of the adaptor. In summary, the visual system seems to adapt to the multiple velocities of an ambiguous stimulus even though a single velocity is perceived. Our findings can be well described by a computational model that assumes a joint encoding of direction and speed and that includes an extended adaptation component that can represent all the possible velocities of the ambiguous stimulus.


Assuntos
Pós-Efeito de Figura , Percepção de Movimento , Adaptação Ocular , Adaptação Fisiológica , Humanos , Movimento (Física) , Software
3.
J Vis ; 19(6): 24, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31251808

RESUMO

What has been previously experienced can systematically affect human perception in the present. We designed a novel psychophysical experiment to measure the perceptual effects of adapting to dynamically changing stimulus statistics. Observers are presented with a series of oriented Gabor patches and are asked occasionally to judge the orientation of highly ambiguous test patches. We developed a computational model to quantify the influence of past stimuli presentations on the observers' perception of test stimuli over multiple timescales and to show that this influence is distinguishable from simple response biases. The experimental results reveal that perception is attracted toward the very recent past and simultaneously repulsed from stimuli presented at short to medium timescales and attracted to presentations further in the past. All effects differ significantly both on their relative strength and their respective duration. Our model provides a structured way of quantifying serial effects in psychophysical experiments, and it could help experimenters in identifying such effects in their data and distinguish them from less interesting response biases.


Assuntos
Simulação por Computador , Orientação Espacial/fisiologia , Psicofísica/métodos , Percepção Visual/fisiologia , Humanos
4.
Curr Biol ; 27(10): 1514-1520.e3, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28479319

RESUMO

Interacting with the natural environment leads to complex stimulations of our senses. Here we focus on the estimation of visual speed, a critical source of information for the survival of many animal species as they monitor moving prey or approaching dangers. In mammals, and in particular in primates, speed information is conceived to be represented by a set of channels sensitive to different spatial and temporal characteristics of the optic flow [1-5]. However, it is still largely unknown how the brain accurately infers the speed of complex natural scenes from this set of spatiotemporal channels [6-14]. As complex stimuli, we chose a set of well-controlled moving naturalistic textures called "compound motion clouds" (CMCs) [15, 16] that simultaneously activate multiple spatiotemporal channels. We found that CMC stimuli that have the same physical speed are perceived moving at different speeds depending on which channel combinations are activated. We developed a computational model demonstrating that the activity in a given channel is both boosted and weakened after a systematic pattern over neighboring channels. This pattern of interactions can be understood as a combination of two components oriented in speed (consistent with a slow-speed prior) and scale (sharpening of similar features). Interestingly, the interaction along scale implements a lateral inhibition mechanism, a canonical principle that hitherto was found to operate mainly in early sensory processing. Overall, the speed-scale normalization mechanism may reflect the natural tendency of the visual system to integrate complex inputs into one coherent percept.


Assuntos
Encéfalo/fisiologia , Modelos Estatísticos , Percepção de Movimento/fisiologia , Vias Visuais/fisiologia , Adulto , Feminino , Humanos , Masculino , Psicofísica
5.
J Vis ; 15(9): 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26200891

RESUMO

Our perception of the world is strongly influenced by our expectations, and a question of key importance is how the visual system develops and updates its expectations through interaction with the environment. We used a visual search task to investigate how expectations of different timescales (from the last few trials to hours to long-term statistics of natural scenes) interact to alter perception. We presented human observers with low-contrast white dots at 12 possible locations equally spaced on a circle, and we asked them to simultaneously identify the presence and location of the dots while manipulating their expectations by presenting stimuli at some locations more frequently than others. Our findings suggest that there are strong acuity differences between absolute target locations (e.g., horizontal vs. vertical) and preexisting long-term biases influencing observers' detection and localization performance, respectively. On top of these, subjects quickly learned about the stimulus distribution, which improved their detection performance but caused increased false alarms at the most frequently presented stimulus locations. Recent exposure to a stimulus resulted in significantly improved detection performance and significantly more false alarms but only at locations at which it was more probable that a stimulus would be presented. Our results can be modeled and understood within a Bayesian framework in terms of a near-optimal integration of sensory evidence with rapidly learned statistical priors, which are skewed toward the very recent history of trials and may help understanding the time scale of developing expectations at the neural level.


Assuntos
Sensibilidades de Contraste/fisiologia , Aprendizagem/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Mascaramento Perceptivo , Adulto Jovem
6.
J Vis ; 13(4)2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23487160

RESUMO

Our perceptions are fundamentally altered by our expectations, i.e., priors about the world. In previous statistical learning experiments (Chalk, Seitz, & Seriès, 2010), we investigated how such priors are formed by presenting subjects with white low contrast moving dots on a blank screen and using a bimodal distribution of motion directions such that two directions were more frequently presented than the others. We found that human observers quickly and automatically developed expectations for the most frequently presented directions of motion. Here, we examine the specificity of these expectations. Can one learn simultaneously to expect different motion directions for dots of different colors? We interleaved moving dot displays of two different colors, either red or green, with different motion direction distributions. When one distribution was bimodal while the other was uniform, we found that subjects learned a single bimodal prior for the two stimuli. On the contrary, when both distributions were similarly structured, we found evidence for the formation of two distinct priors, which significantly influenced the subjects' behavior when no stimulus was presented. Our results can be modeled using a Bayesian framework and discussed in terms of a suboptimality of the statistical learning process under some conditions.


Assuntos
Aprendizagem/fisiologia , Percepção de Movimento/fisiologia , Detecção de Sinal Psicológico/fisiologia , Análise de Variância , Teorema de Bayes , Sinais (Psicologia) , Humanos , Estimulação Luminosa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...